Solution to Assignment 6

Supplementary Problems

1. In the proof of Theorem 1 in Lecture 11, we only consider the case $R_j \in \mathcal{A}$, that is, $\partial f_1/\partial u \neq 0$ in R_j and leave out the case $\partial f_1/\partial v \neq 0$ on R_j . Provide a proof in this case. Suggestion: Switch the variables u and v.

Solution. When $\partial f_1/\partial v \neq 0$ in R_i , define $\Psi = \Phi \circ T$ where T(u, v) = (v, u). Then

$$(g_1(u,v),g_2(u,v)) = \Psi(u,v) = \Phi(v,u) = (f_1(v,u),f_2(v,u)) ,$$

so $\partial g_1/\partial u = \partial f_1/\partial v \neq 0$ in $S_j = T^{-1}(R_j)$. Ψ is in Case (i) and the change of variables formula holds for Ψ . In other words,

$$\iint_{S_j} F(\Psi(u,v)) \left| \frac{\partial(g_1,g_2)}{\partial(u,v)} \right| \, dA(u,v) = \iint_{D_j} F(x,y) \, dA(x,y) \,$$

Now, using

$$\frac{\partial(g_1, g_2)}{\partial(u, v)} = -\frac{\partial(f_1, f_2)}{\partial(u, v)}$$

we conclude the formula also holds for Φ .

2. Find the volume of the ball in \mathbb{R}^4 , that is, $\{(x, y, z, w) : x^2 + y^2 + z^2 + w^2 \leq R^2\}$. Suggestion: Apply the change of variables formula after introducing generalized polar coordinates $w = \rho \cos \psi, z = \rho \sin \psi \cos \varphi, x = \rho \sin \psi \sin \varphi \cos \theta, y = \rho \sin \psi \sin \varphi \sin \varphi$ or use cross section method.

Solution. A direct computation shows that

$$\frac{\partial(x, y, z, w)}{\partial(\rho, \psi, \varphi, \theta)} = \rho^3 \sin \psi \sin^2 \varphi,$$

so the volume of the 4-dim ball of radius R is given by

$$\iint_{B_R} 1 \, dV = \int_0^{2\pi} \int_0^\pi \int_0^\pi \int_0^\pi \frac{\partial(x, y, z, w)}{\partial(\rho, \psi, \varphi, \theta)} \, d\rho d\psi d\varphi d\theta = \frac{\pi^2}{2} R^4 \, .$$

Alternatively, we use cross section method (Theorem 3 in Lecture 7). For $w \in [-R, R]$, the *w*-cross section is a 3-ball of radius $\sqrt{R^2 - w^2}$, so its 3-dimensional area is given by $\frac{4}{3}\pi (R^2 - w^2)^{3/2}$. The volume of B_R is

$$\int_{-R}^{R} \frac{4\pi}{3} (R^2 - w^2)^{3/2} dw = \frac{\pi^2}{2} R^4 \; .$$